AZP-3404, a Peptide Analog of IGFBP-2, Induces Weight Loss and Improves Glucose Metabolism in Leptin-Resistant db/db Mice

Michael D. Culler1, Stéphane Milano1, Thomas Delale1, Michel Owize1, Aart Jan van der Lely2, David Clemmons3
1Amolyt Pharma, Cambridge, MA, USA and Lyon, France. 2Erasmus University MC, Rotterdam, Netherlands. 3New Paradigm Therapeutics, Chapel Hill, NC, USA

INTRODUCTION: Insulin-like growth factor binding protein-2 (IGFBP-2) has been demonstrated to be a key mediator of the peripheral metabolic actions of leptin. In animal models of metabolic dysregulation, IGFBP-2 has been demonstrated to reverse insulin resistance and diabetes, and to prevent development of obesity (1, 2). In clinical studies, circulating IGFBP-2 levels are positively correlated with protection from development or worsening of insulin resistance, obesity and diabetes (3-5). The metabolic activity of IGFBP-2 is independent of IGF1 binding, and can be localized to a unique heparin-binding domain (HBD-1) within its structure (7-9). AZP-3404 is a 9-amino acid analog of the IGFBP-2 HBD-1 that reproduces the activity of IGFBP-2 on adipocyte and osteoblast differentiation. In addition, AZP-3404 has been demonstrated to increase glucose uptake by differentiated mouse myotubes in vitro, and to increase glucose disposal following an intraperitoneal glucose tolerance test (IPGTT) in leptin-deficient ob/ob mice (10). In the present study, we hypothesized that AZP-3404 should be able to improve metabolic regulation in the db/db mouse, which is leptin-resistant due to a mutation in the leptin receptor, and, as a consequence, is also IGFBP-2 deficient.

METHODS: Six-week old male db/db mice (BKS(DB/DB): Janvier Labs, France) were treated with vehicle (10mM glutamic acid/NaOH buffer with 5% w/v mannitol, pH 4.8) for 1 week to allow acclimatization and to establish baseline weights. Mice were maintained on a 12h light cycle and fed a standard diet (SAFE, Ref: U8400G01) and tap water ad libitum for the entire study. Following acclimatization, the mice were randomly distributed among 4 treatment groups (=10/group) to receive either vehicle or AZP-3404 at doses of 1, 3 or 6mg/kg, sc, bid for 8 weeks. Body weight and food intake were measured weekly. To assess the impact of AZP-3404 treatment on glucose disposal, after both 4 and 8 weeks of treatment, following an overnight fast, the mice were administered an intraperitoneal glucose tolerance test (ipGTT: tail vein blood collected and glucose measured by colorimetric assay at 0, 30, 60, 90, 120 and 240 minutes post-ip injection of 1g glucose/kg). Fasting insulin was also measured after 8 weeks of treatment and the HOMA measure of insulin resistance was determined. The study was conducted at the laboratories of Physigenex, Escaquens, France.

FIG 2. After 4 weeks of treatment, a significant increase in glucose disposal was observed in mice treated with the 6 mg/kg dose of AZP-3404 (AUC glucose decreased by 28.7%) versus vehicle-treated controls. By 8 weeks of treatment, all three doses produced similar increases in glucose disposal (AUC glucose decreased by 18.8, 21.4 and 23.1% with 1, 3 and 6 mg/kg AZP-3404, respectively) versus vehicle controls.

FIG 3 and 4. After 8 weeks of treatment with 1, 3 and 6 mg/kg AZP-3404, fasting plasma insulin was decreased by 54, 48 and 52%, and the HOMA measure of insulin resistance was decreased by 54, 52 and 67%, respectively, as compared with vehicle-treated mice.

FIG 1. At the initiation of treatment, the mice weighed an average of 39.72 g and, after 8-weeks, vehicle-treated mice had gained 8.52 grams of body weight. Mice treated with either 1 or 3mg/kg AZP-3404 displayed a progressive decrease in weight gain that began after 2 weeks of treatment and by 8 weeks was 52.1% and 58.2% less than controls, respectively, and without a noticeable change in food intake. For reasons unknown, an only 5.2% decrease in weight gain from the vehicle-treated mice was observed with the 6mg/kg treatment.*p<0.05, ***p<0.001, ****p<0.0001 versus vehicle.

SUMMARY: The present study demonstrates both decreased body weight gain and improved glucose metabolism following treatment of the leptin-resistant db/db mouse with the IGFBP-2-derived peptide, AZP-3404. The difference in the dose-related effects of AZP-3404 on these two parameters suggest that they may be regulated by independent IGFBP-2 mechanisms. These results further confirm the ability of AZP-3404 to reproduce the metabolic activity of IGFBP-2, and support the development of AZP-3404 as a novel therapy for disease states characterized by insulin resistance and/or obesity, and especially in leptin-resistant conditions.

2) Reddick et al. Cell Metab 11:11, 2010
6) Yao et al. Clin Obesity 8:184, 2018
8) Xi et al. Endocrinol 154:4146, 2013
9) Xi et al. Bone Res 7:211, 2019
10) Culler et al. EEC OGL 1, 2019