OR23-04 - TREATMENT OF CHRONIC HYPOPARATHYROIDISM WITH ENEBOPARATIDE (AZP-3601), A NOVEL PTH 1 RECEPTOR AGONIST: RESULTS FROM A PHASE 2 TRIAL

Peter Kamenicky, MD, PhD¹, Istvan Takacs, MD², Emese Mezosi, MD³, Alfonso Soto, MD⁴, Lucile Figueres, MD, PhD⁵, Sandrine Lemoine, MD, PhD⁶, Francoise Borson-Chazot, MD,PhD७, Ismael Capel, MD, PhD७, Maria Angeles Galvez Moreno, MD७, Michel Ovize, MD, PhD¹0, Taha OuldRouis, MD¹0, Soraya Allas, MD, PhD¹0, Mark Sumeray, MD¹0, Michael Mannstadt, MD¹¹.

¹Hôpital Bicêtre, Le Kremlin Bicetre, France, ²Semmelweis Egyetem Belgyógyászati és Onkológiai Klinika, Endocrinology, Budapest, Hungary, ³Pécsi Tudományegyetem Klinikai Központ I.sz. Belgyógyászati Klinika, Pecsi, Hungary, ⁴Complejo Hospitalario Universitario A Coruña, La coruna, Spain, ⁵Nantes University, Nantes, France, ⁶Lyon University, Lyon, France, ⁷Universite de Lyon, Bron, France, ⁸Hospital Universitari Parc Tauli, Sabadell, Spain, ⁹Hospital Universitario Reina Sofía, cordoba, Spain, ¹⁰Amolyt Pharma, Ecully, France, ¹¹Massachusetts General Hospital and Harvard Medical School, Endocrine Unit, Boston, MA, US

CONFLICT OF INTEREST

Peter Kamenicky, MD, PhD

Co-investigator

Shire / Takeda SHP634-401

Amolyt Pharma AZP-3601-CLI-001, AZP-3601-CLI-002

Calcylitix Pharmaceutics CLTX-305-301

• Speaker's honoraria, congress invitations

Shire / Takeda Amolyt Pharma

Advisory board:

Ascendis Pharma

Eneboparatide (AZP-3601): a peptide that preferentially binds the R⁰ conformation of the PTH1 receptor

Study Design

- 3-month multicenter open label study to evaluate the safety and efficacy of eneboparatide
- 2 consecutive cohorts of patients with chronic HP
 - Cohort 1 (n=12): 20 μg/day as starting dose (individual titration up to 60 μg/day)
 - Given the effectiveness and tolerability of dose 20 μ g, dose 10 μ g was selected for Cohort 2 (n=16) as a starting dose in order to further explore dose relationship (individual titration up to 80 μ g/day)

Target range for serum calcium defined as 7.8 to 9 mg/dL

Patient Flow through both Cohorts

Baseline Characteristics

	Cohort 1 N=12	Cohort 2 N=16
Mean age, years (SD), min-max	62.7 (9.7), 44-72	54 (11.2), 26-72
Female, n (%)	9 (75%)	12 (75%)
Mean BMI, kg/m ² (SD), min-max	28.3 (4.4), 23.0-37.1	29.1 (5.4), 19.6-38
Post-menopausal women, n (%)	7 (58.3%)	7 (43.8%)
Mean time since menopause, years, min-max	20.1, 10-33	13.5, 2-20
Mean time since cHP diagnosis (overall population), years, min-max	12.8, 2-31	12.3, 3-50
Mean time since cHP diagnosis (women only), years, min-max	13, 2-31	13, 3-50
Etiology of cHP Post-surgery, n (%) Idiopathic, n (%) Genetic, n (%)	10 (83.3%) 2 (16.7%) -	13 (81.3%) 2 (12.5%) 1 (6.2%)
Mean oral vitamin D (calcitriol dose equivalent), μg/day, min-max	0.67, 0.25-1	0.60, 0.25-1
Mean oral calcium dose, mg/day, min-max	1,625, 1,000-3,500	1,688, 1,000-7,800
Mean Alb-adjusted serum calcium, mg/dL, min-max	8.67, 8.10-9.20	8.70, 7.72-9.6
Mean 24-hour urinary calcium, mg/24h, min-max	329, 143-614	331, 57-729

Eneboparatide Was Well-Tolerated with a Good Safety Profile

Adverse Event	Cohort 1 N=12 n (n/N %)	Cohort 2 N=16 n (n/N %)	Total N=28 n (n/N %)
SAEs	0	0	0
AEs	36	77	113
Mild	25 (69%)	67 (87%)	92 (81%)
Moderate	11 (31%)	10 (13%)	21 (19%)
Severe	0	0	0
ISRs	4 in 4 patients	14 in 9 patients	18 in 13 patients
Hypocalcemia	2	9*	11
Hypercalcemia	3	0	3

- Eneboparatide treatment was well tolerated
- No SAEs
- Good safety profile with no safety concerns

-

^{*}Hypocalcemia was more common in Cohort 2 likely due to lower starting dose (10 $\mu g/d$)

Demonstrated Potential to Eliminate Standard of Care Treatment - Calcitriol

C1 Patients who completed Extension Period, N=10

C2 Patients who completed Extension Period, N=14

For one patient, calcitriol was reintroduced at D84 instead of D85 due to a misunderstanding of the protocol

Eneboparatide enabled *discontinuation of Vitamin D* within two weeks of treatment initiation

Demonstrated Potential to Eliminate Standard of Care Treatment – Oral Calcium

C1 Patients who completed Extension Period, N=10

CI Patients who completed Extension Period, N=10

C2 Patients who completed Extension Period, N=14

PHARMA

In both cohorts, eneboparatide enabled *sustained reduction in oral calcium supplementation* below 500mg/d. In Cohort 2, discontinuation of oral calcium supplementation was delayed and required up-titration due to the lower starting dose, supporting a *dose-related effect*

Maintained Target Mean Serum Calcium Throughout the Study Duration

Eneboparatide mean (SD) dose at Day 84 was 28(15) μg/d in C1 and 43(18) μg/day in C2

Induced a Rapid, Profound and Sustained Normalization of Mean 24-Hour Urine Calcium

Mean 24h-Urinary Calcium – Patients with Elevated Urinary Ca at Baseline

In 12/13 (92%) patients with elevated urinary calcium at baseline, efficacy of eneboparatide demonstrated by rapid, profound and sustained normalization of 24-hour urine calcium

Eneboparatide Stimulated a Balanced Resumption of Bone Turnover

- Eneboparatide induced a gradual and mild increase in both anabolic and catabolic bone markers to the mid-normal level by 4-8 weeks
- Findings support eneboparatide's mechanism of action targets urinary calcium reabsorption rather than bone resorption
- This may be an important effect if confirmed in longer term studies since 17-43% of patients with HP have osteopenia or osteoporosis; 53% are peri- or postmenopausal women

Bone Mineral Density and Trabecular Bone Score Remained Stable

Consistent with a balanced increase in bone biomarkers, **Bone Mineral Density and Trabecular Bone Score** remained stable

Showed Promising Effect on Bone for Patients at Risk of Bone Disease

- Consistent with a balanced increase in bone biomarkers, Z-score and T-score remained stable, including in patients with osteopenia
- 6/14 patients (43%) were osteopenic at baseline: radius (3), femoral (2), radius+femoral (1)

SUMMARY AND CONCLUSION

- Eneboparatide treatment for 3 months was well tolerated with no safety concerns.
- Standard of care (active vitamin D and oral calcium supplementation) was rapidly eliminated while mean ADsCa was maintained within the target range.
- Mean urinary calcium decreased to within the normal range including in patients with hypercalciuria at baseline.
- Bone biomarker data were consistent with a balanced resumption of bone turnover.
- Cohort 1 and Cohort 2 data support eneboparatide as a potential treatment of chronic hypoparathyroidism targeting urinary calcium reabsorption rather that bone resorption, and advancement to Phase 3 with 20 μg as the starting dose.
- A multicenter, randomized, placebo-controlled, double-blind Phase 3 study is underway in North America and Europe (CT.gov Id: NCT05778071).

